Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 1219-1228, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559724

RESUMO

Borocarbonitride (BCN), in a mesoscopic asymmetric state, is regarded as a promising photocatalyst for artificial photosynthesis. However, BCN materials reported in the literature primarily consist of symmetric N-[B]3 units, which generate highly spatial coupled electron-hole pairs upon irradiation, thus kinetically suppressing the solar-to-chemical conversion efficiency. Here, we propose a facile and fast weak-field electro-flash strategy, with which structural symmetry breaking is introduced on key nitrogen sites. As-obtained double-substituted BCN (ds-BCN) possesses high-concentration asymmetric [B]2-N-C coordination, which displays a highly separated electron-hole state and broad visible-light harvesting, as well as provides electron-rich N sites for O2 affinity. Thereby, ds-BCN delivers an apparent quantum yield of 7.6% at 400 nm and a solar-to-chemical conversion efficiency of 0.3% for selective 2e-reduction of O2 to H2O2, over 4-fold higher than that of the traditional calcined BCN analogue and superior to the metal-free C3N4-based photocatalysts reported so far. The weak-field electro-flash method and as-induced catalytic site symmetry-breaking methodologically provide a new method for the fast and low-cost fabrication of efficient nonmetallic catalysts toward solar-to-chemical conversions.

2.
J Colloid Interface Sci ; 663: 413-420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412727

RESUMO

Achieving O2 photoreduction to H2O2 with high selectivity control and durability while using easily accessible catalyst requires new synthesis strategies. Herein, we propose an asymmteric Sb coordination active center strategy of introducing anthraquinone (AQ) and heptazine to form local N3 - Sb - O coordination by a rapid and simple explosive crystallization approach, resulting in a mesoporous conjugated heptazine-amide-AQ polymer coordinated Sb (HAAQ-Sb). It is demonstrated that the N3 - Sb - O coordination effectively suppresses the charge recombination and acts as the highly active site for O2 adsorption. Moreover, as-introduced AQ units initiate low-barrier hydrogen transfer through a reversible redox process that triggers highly-efficient H2O2 production. A superior apparent quantum yield of 20.2 % at 400 nm and a remarkable solar-to-chemical conversion efficiency of 0.71 % are achieved on the optimal HAAQ-Sb, which is the highest among C3N4-based photocatalysts at present. This asymmetric coordination concept and material design method provide new perspectives for the research of novel catalysts toward artificial photosynthesis.

3.
Angew Chem Int Ed Engl ; 62(50): e202315456, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933417

RESUMO

Herein, the exposure of highly-active nitrogen cation sites has been accomplished by photo-driven quasi-topological transformation of a 1,10-phenanthroline-5,6-dione-based covalent organic framework (COF), which contributes to hydrogen peroxide (H2 O2 ) synthesis during the 2-electron O2 photoreduction. The exposed nitrogen cation sites with photo-enhanced Lewis acidity not only act as the electron-transfer motor to adjust the inherent charge distribution, powering continuous and stable charge separation, and broadening visible-light adsorption, but also providing a large number of active sites for O2 adsorption. The optimal catalyst shows a high H2 O2 production rate of 11965 µmol g-1 h-1 under visible light irradiation and a remarkable apparent quantum yield of 12.9 % at 400 nm, better than most of the previously reported COF photocatalysts. This work provides new insights for designing photo-switchable nitrogen cation sites as catalytic centers toward efficient solar to chemical energy conversion.

4.
Nanomicro Lett ; 15(1): 32, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624319

RESUMO

Efficient synthesis of transition metal hydroxides on conductive substrate is essential for enhancing their merits in industrialization of energy storage field. However, most of the synthetic routes at present mainly rely on traditional bottom-up method, which involves tedious steps, time-consuming treatments, or additional alkaline media, and is unfavorable for high-efficiency production. Herein, we present a facile, ultrafast and general avenue to synthesize transition metal hydroxides on carbon substrate within 13 s by Joule-heating method. With high reaction kinetics caused by the instantaneous high temperature, seven kinds of transition metal-layered hydroxides (TM-LDHs) are formed on carbon cloth. Therein, the fastest synthesis rate reaches ~ 0.46 cm2 s-1. Density functional theory calculations further demonstrate the nucleation energy barriers and potential mechanism for the formation of metal-based hydroxides on carbon substrates. This efficient approach avoids the use of extra agents, multiple steps, and long production time and endows the LDHs@carbon cloth with outstanding flexibility and machinability, showing practical advantages in both common and micro-zinc ion-based energy storage devices. To prove its utility, as a cathode in rechargeable aqueous alkaline Zn (micro-) battery, the NiCo LDH@carbon cloth exhibits a high energy density, superior to most transition metal LDH materials reported so far.

5.
Adv Mater ; 34(28): e2110266, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524761

RESUMO

Two-electron oxygen photoreduction to hydrogen peroxide (H2 O2 ) is seriously inhibited by its sluggish charge kinetics. Herein, a polarization engineering strategy is demonstrated by grafting (thio)urea functional groups onto covalent triazine frameworks (CTFs), giving rise to significantly promoted charge separation/transport and obviously enhanced proton transfer. The thiourea-functionalized CTF (Bpt-CTF) presents a substantial improvement in the photocatalytic H2 O2 production rate to 3268.1 µmol h-1 g-1 with no sacrificial agents or cocatalysts that is over an order of magnitude higher than unfunctionalized CTF (Dc-CTF), and a remarkable quantum efficiency of 8.6% at 400 nm. Mechanistic studies reveal the photocatalytic performance is attributed to the prominently enhanced two-electron oxygen reduction reaction by forming endoperoxide at the triazine unit and highly concentrated holes at the thiourea site. The generated O2 from water oxidation is subsequently consumed by the oxygen reduction reaction (ORR), thereby boosting overall reaction kinetics. The findings suggest a powerful functional-groups-mediated polarization engineering method for the development of highly efficient metal-free polymer-based photocatalysts.

6.
Angew Chem Int Ed Engl ; 61(19): e202202328, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35229432

RESUMO

A partially fluorinated, metal-free, imine-linked two-dimensional triazine covalent organic framework (TF50 -COF) photocatalyst was developed. Fluorine (F)-substituted and nonsubstituted units were integrated in equimolar amounts on the edge aromatic units, where they mediated two-electron O2 photoreduction. F-substitution created an abundance of Lewis acid sites, which regulated the electronic distribution of adjacent carbon atoms and provided highly active sites for O2 adsorption, and widened the visible-light-responsive range of the catalyst, while enhancing charge separation. Varying the proportion of F maximized the interlayer interactions of TF50 -COF, resulting in improved crystallinity with faster carrier transfer and robust photostability. The TF50 -COF catalyst demonstrates high selectivity and stability in O2 photoreduction into H2 O2 , with a high H2 O2 yield rate of 1739 µmol h-1 g-1 and a remarkable apparent quantum efficiency of 5.1 % at 400 nm, exceeding the performance of previously reported nonmetal COF-based photocatalysts.

7.
Analyst ; 144(16): 4925-4934, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31313759

RESUMO

Designing highly active electrode is important for the fabrication of electrochemical sensing platforms, and core-shell nanostructures with large specific surface areas and ease of accessibility are effective probes for the detection of biomolecules. In this work, we report the development of hierarchical core-shell Ni3S2/NiMoO4 nanowires on a nickel foam substrate (Ni-Ni3S2/NiMoO4) as a non-noble metal catalyst electrode for the electrochemical oxidation of glucose in alkaline electrolyte. As an electrochemical sensor for glucose detection, the fabricated hierarchical Ni-Ni3S2/NiMoO4 core-shell nanowires display an enhanced catalytic response, a fast response time of 1 s with a limit of detection (LOD) of 0.055 µM (S/N = 3), and a higher sensitivity of 10.49 µA µM-1 cm-2. Unlike Ni3S2 or NiMoO4 electrodes, the observed superior catalytic activity towards glucose is mainly due to the promotional effect of NiMoO4 nanosheets on the Ni3S2 nanowires, which can increase the large active surface area and generate numerous active sites within and on the surface walls of the nanowire structures. The developed Ni-Ni3S2/NiMoO4 nanowire electrode can selectively detect glucose in the presence of other carbohydrates, such as fructose, sucrose, lactose, maltose, galactose, mannose, and xylose, indicating potential anti-interference properties. The Ni-Ni3S2/NiMoO4 nanowire electrode is highly stable for reuse and its practical application is demonstrated using real blood serum samples. These results demonstrate that hierarchical core-shell Ni3S2/NiMoO4 nanowires show potential for application in the development of low-cost applied glucose sensors.


Assuntos
Glicemia/análise , Nanofios/química , Níquel/química , Glicemia/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Molibdênio/química , Oxirredução
8.
Small ; 14(27): e1800791, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29847708

RESUMO

Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core-shell structured Ni3 S2 @NiMoO4 nanowires (NWs) as a binder-free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni3 S2 and NiMoO4 , the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as-prepared binder-free Ni3 S2 @NiMoO4 electrode can significantly improve the electrical conductivity between Ni3 S2 and NiMoO4 , and effectively avoid the aggregation of NiMoO4 nanosheets, which provide more active space for storing charge. The Ni3 S2 @NiMoO4 electrode presents a high areal capacity of 1327.3 µAh cm-2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm-2 . In a two-electrode Ni3 S2 @NiMoO4 //active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg-1 at a power density of 2.285 kW kg-1 with excellent cycling stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...